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Abstract 

The rising population growth and the number of electrical appliances used 

day by day, leads to an increase in the consumption of electrical energy, hence the 

demand for electricity, leading to strain on electricity suppliers. Because there are 

many factors that affect electricity consumption, the use of the smart meter 

technology enables us to obtain massive amounts of data around the clock, this 

facilitates predicting power consumption and energy management regulation. 

In this study, a model was proposed to predict the energy consumption of a 

single household in the short term (one day, one week) and medium term (one 

month). The proposed model consists of four stages: data collection, pre-

processing stage, the prediction stage and the performance evaluation stage. Data 

set was collected through a single house smart meter for model validation and 

results analysis. Then, a deep learning machine Long Short-Term Memory LSTM, 

and well-known machine learning algorithms Support Vector Regression SVR, K-

nearest neighbor KNN and Naive Bayes applied it to pre-processed data to predict 

energy consumption for one day, one week and one month. They are compared 

using statistical measures: Mean absolute error (MAE), mean absolute percentage 

error (MAPE) and root mean square error (RMSE) for performance measurement 

of these machine learning algorithms. 

These statistical measurement values indicate that the performance of 

proposed model LSTM is better than K-NN, SVR and Naïve Bayes for predicting 

energy for one day, one week and one month on the data given. The results of the 

model LSTM are MAE 0.183, MAPE 18.324 and RMSE 0.244 for one day power 

consumption prediction, MAE 0.145, MAPE 15.182 and RMSE 0.179 for one-

week power consumption prediction. MAE 0.145, MAPE 14.018 and RMSE 0.166 

for one-month power consumption prediction. It is clear that LSTM model is 

capable of predicting the consumption of electricity in the short term (one day, one 

week) and medium term (one month) with high accuracy. 
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Chapter one 

 Introduction 

1.1 Overview 

 
Consuming power is an everyday practice for people around the world 

that is done with no real care. Because of the rapid economic development 

and increasing population growth, the previous decades witnessed a steady 

high demand for energy usage and thus consumption. As a result, demand on 

power exceeded the generation capacity leading to difficulties to meet that 

high demand in some part of the world. The management of energy 

consumption problem is too big to deal with the losses caused by the growing 

consumption patterns [1].  

The rapid increase in energy consumption requires an accurate 

expectation of the distribution of electricity consumption [2]. In order to 

accurately predict the use of electricity, it is necessary to track electricity 

consumption. Therefore, Advanced Metering Infra-structure AMI was 

introduced. AMI leads to a large amount of energy consumption data. AMI 

data is used to predict energy consumption. The prediction helps make 

decisions about energy distribution from the national grid. Accurate 

forecasting of electricity consumption can prevent unplanned power outages 

[3]. 

    The smart grid (SG) is considered one of the most important 

applications of the Internet of Things. It is an integrated data communication 

network that is used to collect and analyze data via transmission lines and 

distribution substations as well as the final consumer throughout the 

electricity network, and an expectation of consumption can be obtained 

through this data provided to energy suppliers for strategies Efficient energy 

management [4].  
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    The very crucial part of the smart grid to register power consumption 

all over the power grid at the end user side, is the smart meter that collect 

data on an hourly basis or less and feedback such data to suppliers. Smart 

meters allow contact between the meter and the central network possible in 

two ways. The collection of detailed data in an interval of 15 mints or less 

will assist power suppliers as well as consumers to have a comprehended 

view of the consumption patterns via data analytics, which has become an 

important part of the industry research and development field [5]. The data 

(meter data analytics) sent by smart meters are analyzed for the purposes of:  

• Utilization of usage patterns to help in decision making pertaining to 

purchases. 

• Making power consumption predictions using via previous consumption 

patterns. 

• Maintaining efficient power supplies in cooperation with consumers. 

• Finding out illegitimate grid connections.      

• Compare and correct the performance of meter service providers, to 

reduce unpaid bills and better maintenance decision to help keeping the 

grid on [1].   

   Electricity consumption is a time-dependent attribute. Therefore, there 

are approaches that use time series to build the model to predict electricity 

consumption. Availability of past information leads to solutions based on 

time series analysis since it reflects the time-dependent variations [6]. 

The forecasts for electricity consumption have been identified as short 

term (hourly to one week), mid-term (one week to one year), and long term 

(more than one year) forecasts [7]. 

Time-series analysis techniques are addressed using conventional 

approaches and artificial intelligent-based approaches (Artificial Neural 

Network (ANN), Deep Neural Network (DNN), Multiple Regression (MR), 

Support Vector Machine (SVM), Genetic Programming (GP)). There are 
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many challenges for mid-term and long-term electricity consumption 

forecasting [3]. 

This thesis presents treatment of increased electricity consumption 

through proposed energy consumption prediction model that use four 

approaches, along Short-Term Memory (LSTM), a Support Vector 

Regression (SVR), a K-nearest-neighbor (KNN) and a Naive Bays through 

forecast electricity consumption for short-term (one day, one week), mid-

term (one month). The reason for using these algorithms is that they are a 

great fit for our problem, since electricity consumption is constantly variable . 

 

1.2 Related Works 

 
There is a group of studies and researches in this field that dealt with 

methods of predicting power consumption through the use of smart meter 

data and the most important are: 

• Zheng et al,2017 [8]. The use of a long-term-short-term memory 

(LSTM)based repetitive neural network (RNN) has been proposed to 

address the short-term electrical load prediction problem, using a 

long-term electricity consumption data set. And compare it in the 

following methods: SARIMA (Autoregressive Integrated Moving 

Average) which is a seasonal moving average model with integrated 

automatic regression, NARX (Nonlinear Autoregressive Network 

with Exogenous inputs) which is a nonlinear neural network model 

with external input, SVR (Support Vector Regression) which is a very 

popular model in financial time series prediction and NNETAR 

(Neural NET work Auto Regression) which is an automatic neural 

network model to predict single-variable time series with single-layer 

hidden and lagging inputs. Two evaluation criteria were used as a 

measure of performance: root mean square error (RMSE) and mean 
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relative absolute error (MAPE) between real values and prediction 

results. Results showed that LSTM outperforms all other methods 

with the best expected time series. the results for LSTM are RMSE 

=0.0702 and MAPE =0.0535. 

• Quek et al, 2017 [9].  Proposed a short- term forecasting method that 

applies Naïve Bayes Classification (NBC) machine learning technique 

on easily available input parameters are considered as the continuous-

valued data such as instantaneous power, outdoor temperature, panel 

temperature, on-site irradiance and time of the day to predict the 

overall energy generated by photovoltaic cells which are installed in 

distributed region in the next 15-minute period. Based on rule-based 

inferences, continuous-valued data is converted into categorical-

valued data. Categorical valued data is represented as class labels like 

‘very high’, ‘high’, ‘medium’, ‘low’, ‘very low’. Historical test data 

of an existing photovoltaic system located in Singapore is used to 

evaluate the accuracy of the NBC forecasting method and the 

comparison demonstrates that the proposed method is able to achieve 

a forecasting accuracy of over 68 percent. 

 

• Fayaz et al,2018 [10]. Proposed a methodology for predicting energy 

consumption in apartment buildings. The proposed method consists of 

four different layers, namely data acquisition, pretreatment, 

forecasting, and performance assessment. For experimental analysis, 

they collected real data from four multi-storied apartment buildings. 

This data is collected as input to the acquisition layer. In the pre-

processing layer, several data cleaning schemes have been published 

to remove anomalies from the data. In the prediction layer, a Deep 

extreme Learning Machine (DELM) is used to predict energy 

consumption. In addition, the use of the adaptive neuro-fuzzy 
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inference system (ANFIS) and the Artificial Neural Network (ANN). 

A different number of hidden layers, different hidden neurons, and 

different types of activation functions have been used in DELM to 

achieve the optimal DELM structure for predicting energy 

consumption. In the performance appraisal layer for the comparative 

analysis of three prediction algorithms, mean absolute error (MAE), 

root mean square error (RMSE) and mean absolute percentage error 

(MAPE) were used. The results indicate that DELM performed 

significantly better than ANN and ANFIS for predicting energy for 

one week and one month on the data given. The results of the 

algorithm DELM are MAE 2.0008, MAPE 5.7077and RMSE 2.2451 

for one-week prediction. MAE 2.3347, MAPE 6.5464 and RMSE 

2.6864 for one-month prediction. 

• Gokgoz F. et al,2018[11]. In this study, models were presented based 

on deep neural networks, especially long short-term memory 

algorithms LSTM to predict renewable energy loads with a short-term 

forecasting horizon, by using data models from the mechanism to 

support renewable energy resources in Turkey. With an accuracy of 

one hour between January 2016 and December 2017. Creating 432 

different models by changing the cell number of layers and leakage. 

Instead of SGD Stochastic gradient descent (random gradient) the 

“adaptive torque estimation” algorithm used for training as a gradient-

based optimizer. It performed better than SGD in terms of speed in 

convergence and lower error rates. Absolute mean error (MAE) and 

square mean error (MSE) were used to compare model performance. 

Of the 432 models, five results for MAE were 0.66, 0.74, 0.85, and 

1.09. 
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• Zhang et al,2018 [12].In this study, the "support vector regression" 

(SVR) modeling approach was used to predict the consumption of the 

individual electric family applied to daily and hourly data for the use 

of electricity for fifteen households from 2014 to 2016, and by using 

different methods to divide the dataset into a subset of training and 

testing for families that are similar in electricity consumption over 

time, as the successive division on the basis of time works better than 

randomly sampled data. As for families that lack regularity in the 

hourly electricity use, then randomly sampling data and using 20% of 

them as a sub-data set test outperforms the existing approach on the 

time, since the accuracy of daily data achieved the results of 

forecasting the best hourly data for all households. Using mean 

absolute percentage error (MAPE) for one of the fifteen households, 

the daily forecast is 12.78 and the hourly forecast is 23.31, and it drops 

to 22.01 (per hour) if only weekdays are calculated for the same the 

family. 

• George et al, 2018 [13]. Proposed an analytical model describing 

energy consumption by using energy profiles, which gives energy to 

the consumer over a period of time, to conduct quantitative analysis 

using smart meters section. This consumer of the same type assembly 

and the number of devices together section. This use K-Means 

algorithm and k-nearest neighbor classification, the value of the 

account consumption of the most efficient and average consumption 

within each cluster on a monthly basis and used these accounts to 

compare individual user consumption, the use of the data set 

containing the monthly electricity consumption for each apartment for 

one year. 
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• Kim and Cho,2019 [14]. Proposed model that combine the 

convolutional neural network and long short-term memory (CNN-

LSTM). The proposed model extracts spatial and temporal features to 

actively predict energy consumption for the individual household 

electric power consumption dataset. Long-term, mid-term, short-term 

forecasting and real-time forecasting were considered by aggregating 

energy consumption in units of minute, hourly, daily, and weekly. 

Linear regression and LSTM models were used to compare 

experimental results. To evaluate performance, mean squared error 

(MSE), root mean square error (RMSE), mean absolute error (MAE) 

and mean absolute error ratio (MAPE) were used. The proposed 

method achieves higher performance than linear regression and 

LSTM, with RMSE = 0.6114,0.5957, 0.3221, 0.3085 respectively for 

energy consumption per minute, hourly, daily and weekly. 

• Adewuyi et al,2020 [15].They applied three models of deep education 

which are (MLP), (CNN) and (LSTM) to predict electricity demand 

in the short term by using consumption data at the university in 

addition to data on the effect of weather on loads in the tropics, and 

compared them with each other using RMSE,MSE and MAE to 

measure the accuracy of the prediction As it was measured during the 

stages of testing, evaluation and training on different epochs 100, 80, 

60, and 40, the results showed that the LSTM model outperformed the 

rest of the models. It was among its results in the test scale of the epoch 

80, RMSE=2.46, MSE=0.45 and MAE=2.44. 

• Solyali D., 2020[16]. In this study, the techniques of artificial neural 

network (ANN), the Adaptive Neuroscience System (ANFIS), 

multiple linear regression (MLR), and the support vector machine 

(SVM) were used to predict the electrical load in Cyprus. Historical 

data were used to show the use of electricity for the period 2016-2017 
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with long and short- term analysis in Cyprus, and the parameters were 

temperature, humidity, population, electricity price per kilowatt hour, 

gross national income per capita, solar radiation. The results indicated 

that the support vector regression (SVR) is relatively superior to other 

models, as it showed lower prediction errors (4.34%, 4.49%) and root 

mean square error (RMSE) (25.43, 26.44) for long-term prediction. In 

the short-term term, artificial neural network (ANN) techniques 

showed better results than other techniques with lower prediction 

errors (0.97% and 1.67%) and root mean square error (RMSE) (7.67, 

14.91). 

 

Table (1.1): Related Works Summarizations 

No. year Author technique accuracy 

1 2017 Zheng et al. [8] 

LSTM RMSE=0.0702 
MAPE =0.0535 

2 2017 Quek et al. [9] NBC 68% 

3 2018 Fayaz et al. [10] 

DELM RMSE=2.2451 

MAE =2.0008 

MAPE= 5.7077 

4 2018 
Gokgoz F. et al. 

[11] 

LSTM MAE=0.66 

5 2018 Zhang et al. [12] SVR MAPE=12.78 

6 2018 George et al. [13] 
K-Means 

KNN 

______ 

7 2019 Kim and Cho [14] CNN-LSTM RMSE=0.3221 

8 2020 Adewuyi et al. [15] 

LSTM RMSE=2.46 

MSE=0.45 

MAE=2.44 

9 2020 Solyali D. [16] 

SVR 

 

 

ANN 

prediction errors =4.34%, 

RMSE=25.43 

 

prediction errors =0.97% 

RMSE=7.67 
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1.3 Problem Statement 

The rapid increase in human population and development in 

technology have sharply raised power consumption in today's world.  Since 

electricity is consumed simultaneously as it is generated at the power plant, 

it is important to accurately predict the energy consumption in advance for 

stable power supply. Peak demand is a problem that the power industry has 

ever faced as it requires more cost-effective and efficient procedures rather 

than adding more generators.  And since accurate electricity consumption 

forecasts are of utmost importance in energy planning, they provide strong 

support for effective energy demand management. This work demonstrates 

the possibility of using the best model to obtain the best predictive energy 

consumption. This will reduce the gap between consumers and energy 

facilities so that they can Communicate more efficiently. 

 

1.4 Aim of The Thesis 

 
This thesis aimed to predict energy consumption using smart meter 

data through a case study on a single house and choosing a good forecast 

model for predicting energy consumption. 

 

1.5 Objective 

 To contribute to reducing energy consumption, changing people's 

opinion a little smarter during the day in order for a better distribution of 

energy consumption. and prevent unplanned power outages.  
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1.6 Thesis Organization 

Beside this chapter, the remaining parts of this thesis includes the following 

chapters: 

 

Chapter Two: Theoretical Background 

It presents an extensive overview of evolution of meters from past, 

traditional meters. It discusses the motions of Smart Grid, Smart Meter, 

power consumption, prediction of consumption. Also, it illustrates the basic 

principles and the scientific theories of the analysis data. 

Chapter Three: The Proposed System 

  This chapter introduces the steps of the proposed prediction system, with 

its design and implementation. 

Chapter Four: Experimental Results and Evaluation 

This chapter presents the experiments and the results which are obtained 

from the system running and evaluates these results. 

Chapter Five: Conclusions and Suggestions for Future Work 

This chapter presents the conclusions of this work. Furthermore, it provides 

suggestions for future work. 

 



 

 
 

 

 

 

 

 

Chapter Two  
 

 

Theoretical Background 

 



Chapter Two: Theoretical Background 

 

11 
 

Chapter Two  

Theoretical Background 

2.1 Introduction  

This chapter sheds light on the aspects of the theoretical aspects of 

analyzing smart meter data and predicted the electrical energy consumption. 

It includes the development of electricity meters, the conventional electricity 

meters, smart grid, the consumption of power, prediction of consumption, 

data normalization, long and short-term memory (LSTM) algorithm, k-

nearest-neighbor algorithm (KNN), support vector regression (SVR), Naive 

Bayes algorithm and accuracy metrics. 

 

2.2 The Development of Previous Electricity Meters  

Electricity was available in the early years only to a particular section 

of the developed nations. However, this has changed with the development 

of technology as it has also taken the needs of average people in different 

parts of the world. When the electric meters are concerned, one can see that 

it includes different researchers from the past. For example, until the early 

1870s, the general use of electricity was restricted to arc lamps and telegraph. 

Nonetheless, Thomas Elva Edison's invention of the electric lamp had a great 

impact on the power-energy market-making widely available to the public in 

1879. In the year 1888, Oliver B. Shallenberger invented an AC ampere-hour 

meter leading to a remarkable evolution in the metering technology which in 

turn brought lights to households of numerous common people [17].  
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2.3 Traditional Electrical Meters 

The electrical instruments, which are capable of measuring and 

showing energy interpretations, are called electricity meters. Those Standard 

meters have been employed since the late 19th century. Aluminum disks are 

used in most of the conventional electric meters to determine the usage of 

power [18]. Compared to nowadays, electricity meters are operated digitally 

which also have their limitations. Figure (2.1) shows a basic 1 phase 2 wire 

electricity meter. 

 

 

Figure (2.1): Traditional meter [19] 

 

The limitation of traditional electrical meters [18] can be viewed as the 

following:  
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•The nature of the meters is inefficient because users have to expect the 

monthly bill for electricity. 

•The measurement mechanism is assisted by a particular mechanical 

system and is thus named electromechanical meters. 

•A large number of employed inspectors are needed to perform meter 

readings. 

•The handling of the payments is costly and time-consuming. 

•New forms of tariffs cannot be imposed on an hourly basis with the 

accompanying meters for customer motivation. 

•The Complicated development of meter program systems and the 

complicity of supporting network infrastructure. 

In addition, other shortcomings of electrical meters can be seen. For 

example, the instalment of traditional meters leads to unsatisfactory user 

experience. Moreover, meters are of varying types. Thus, although timely 

electricity meter development helps the consumer gain knowledge regarding 

electricity consumption, consumption statistics could not be altered [18]. 

 

2.4 Smart Grid (SG) 

One of the recent developments of electrical grids is smart grids. There 

are a number of factors that affect the efficiency of recent electrical grids. 

For example, they are becoming poor regarding the variability in the 

electrical load of domestic appliances. Furthermore, population growth is 

another indication that shows that electric grids are becoming less unreliable. 

The efficiency of electrical grids is determined by population growth. 

Enhancing the grid performance can be maintained by remotely monitoring 

and increasing reliability, measuring utilization in a communication assisted 
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by providing data (real-time) to customers, suppliers and the other way round 

is named the Smart Grid [20]. Smart grids utilize automated sensors. Such 

devices are responsible for transmitting the assessed data back to utilities and 

have the potential to transfer power faults and prevent power line heating. 

This uses the self-healing feature. Practically, there is a direct link between 

smart meters and smarts grids. By 2030, its installations are expected to 

reduce carbon emissions by 5 per cent annually and it can have a positive 

influence on climate changes [21]. As a result, Smart Grids are 

recommended for many countries for sustainable development and the 

construction of modern grid networks. 

Figure (2.2) shows Smart grid (SG) architecture presenting power 

systems, power flow and information flow. The SG is comprised of four 

main subsystems (power generation, transmission, distribution and 

utilization) and three types of networks (a wide area network (WAN), a 

neighborhood area network (NAN) and a home area network (HAN). The 

power flows through the subsystems while the information flows through the 

networks [22]. 

 

Figure (2.2): Smart Grid (SG) Architecture [22] 

 



Chapter Two: Theoretical Background 

15 
 

2.5 Smart Meter 

A great feature of Smart Meters is that they are taking the consumption 

of energy into consideration; therefore, are used for KWh (Kilowatt-hours) 

calculation of electrical energy [23]. Thus, it can be said that this is a tool 

that gives customers who wish to save money on their power bill a direct 

advantage. 

 

Figure (2.3): Smart Meter [24] 

The smart meter should offer reliable meter reading with the inclusion 

of firm advantages. They also record the use based on intervals of hours or 

fewer than an hour. A smart meter has non-volatile data storage capabilities, 

remote connection or disconnection capabilities, finding tamper, and 

communicating in a two-way technology called advanced integrated 

metering (AMI). Furthermore, they send the gathered data directly to the 

central meter. The main meter controls the smart meter 's functionality. The 
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use of smart metering from an operational perspective allows control and 

manage the electricity grid in a better way [25]. Some of the advantages that 

smart meters offer are: 

•Low running costs. 

•Saving time for customers and utility suppliers to send the meter 

reading back to their electricity providers. 

•Online payment of electricity bills is allowed. 

•The use can be greatly reduced with an intimation policy during the 

high peaks. 

•Has the automated termination feature when the devices are not in 

use [26]. 

While the term smart meter only began to be used after the SG 

initiatives, it can be seen that meter features and functionality evolved from 

the previous manually read meters to AMI meters with dashboard interfaces 

and two-way communication capabilities [25]. 

Smart meter senses all the in-resident consumption produced. Meter 

measurements provide the energy providers with a better perception such 

that the habits of the inhabitants’ total consumption of electricity can be 

changed [27]. 

2.6 The Consumption of Power 

The overall volume of electricity used in an individual home is 

referred to as the energy consumption. Power use is an essential part of 

supplying electricity. Thus, citizens should be conscious of the electricity 

that need to be saved for potential use in the long run. The energy levels were 

changing gradually with the regular use of electricity. Such change in usage 

habits can be caused by environmental conditions or occupants' excessive 
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use of electricity such as a rise in household equipment use and reckless 

behavior of using, for example, not turning off the lights or television while 

not viewing. Such variables can have higher effects on end-users. 

Considering that the power supplied by energy firms is enormous, most 

people ignore resources and savings. In the mentality of utilities, the value 

of consumption is increasing. Energy services should play a significant part 

in promoting the smart meter system and should engage people in rising 

energy impacts by increasing awareness of the effects of their actual usage 

rates [ 28]. 

 

Figure (2.4): Smart Meter Gaging Electrical Machines in a house [29] 

 Figure (2.4) illustrates the day-to-day operations of household 

appliances calculated in a home by a smart meter. Inside the building, the 

smart meter is installed where usage data is analyzed and utilized to build a 

predictive energy demand management system and reduce consumer 

electricity bills. This measuring facility transforms a simple home into a 

smart home [30]. 
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AMI is an improved and modified version of automatic meter reading. 

Information from various types of meters is automatically collected in an 

automatic meter reading and transmitted to a central database for future 

review and billing purposes through a one-way communication network. 

AMI was introduced because the fully automated meter reading could not 

provide bidirectional communications [31]. 

AMI components are made of a centralized system, two-way networks 

of communication, data concentrations, and smart meters. Small and 

medium size enterprises (SMEs) are installed at customer premises or other 

smart grid positions to calculate usage data and send it to the centralized 

computer through billing communications systems, reminding customers 

about their usage, etc. smart meters may offer power usage overviews 

indirect load management, and schedule times for switching on and off 

machines to change the load in SG. Direct load management can also add 

distributed energy services to SG to provide higher load while the power grid 

produces additional energy [32].  

 

2.7 Prediction of Consumption 

Electrical energy has an important role as it is used regularly 

throughout the world and because it cannot be stored and used later, but it 

must be generated and transferred based on demand, so forecasting the 

demand for electricity is the way in which the supplying companies expect 

the energy that the consumer needs and providing the required load demand 

on the short, medium and long term, where forecasting has an important role 

in distributing loads and planning for the construction of future generation 

facilities. The consumption prediction according to the forecast period can 

be divided into: 
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Short term: usually from one hour to one week. 

Medium term: expectations are usually from several weeks to several 

months. 

 Long term: expectations are from one to several years [7,33]. 

In this thesis, the forecasting consumption will be discussed in the 

short term (one day, one week) and the medium term (one month). 

 

2.8 Data Normalization 

One of the techniques of data pre-processing is normalization, where 

attributes of a dataset are converted by measuring their value to fall within a 

specified small range such as 0.0 to 1.0. Minimum and maximum, z-score 

and decimal normalization are normalization techniques [34]. 

 

• Min-max Normalization 

Min-max normalization leads to a linear transformation of the main 

data, and maintains the relationships between the original data values. 

Assume that 𝑚𝑖𝑛𝐴 is the minimum value for attribute A, and 𝑚𝑎𝑥𝐴 is the 

maximum value for attribute A. Min-max normalization maps a value 𝑣𝑖 of 

A to 𝑣′𝑖 in the range [𝑛𝑒𝑤_𝑚𝑎𝑥𝐴, 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴] Calculated as equation 

(2.1)[34]: 

𝑣′𝑖 =
𝑣𝑖−𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴−𝑚𝑖𝑛𝐴
(𝑛𝑒𝑤_𝑚𝑎𝑥𝐴 − 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴) + 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴                (2.1) 

 

It will encounter an "out of bounds" error if the normalized future 

input state is outside the original data range of A [34]. 



Chapter Two: Theoretical Background 

20 
 

2.9 Recurrent Neural Network 

Recurrent Neural Network, or commonly identified as RNN are 

intended to collect data related to time series information. They receive 

varying number and send the output of adjustable magnitude, which works 

very well for data from time series. It can be challenging to comprehend 

RNN and much representation may lead to misunderstanding it. RNN 

operates as given in equation (2.2) [35]: 

𝑆𝑡 = 𝐹𝑤(𝑆𝑡−1, 𝑋𝑡)                                                              (2.2) 

 

The new state of the recurrent neural network at time t is a function of 

its old state at time t-1 and the input at time t. St = current state (at time t), 

𝑆𝑡−1 = previous state, and  𝑋𝑡= input at time t. This function is the basic idea 

behind RNN. The simplest implementation of RNN is presented in figure 

(2.5). 

 

 

 

Figure (2.5): Simple RNN [36] 

 

The recursive function is a tanh function which maps all values 

between -1 and 1, as described in equation (2.3) [35]. Where the input state 

is multiplied with the weight of input Wx and the previous state with Ws and 

pass it through a tanh activation which results in the new state as given in 

equation (2.4) [35]. In order to get the output vector, the new state is 

multiplied with that is St with 𝑊𝑦 as given in equation (2.5) [35]. 
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tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
                                                                      (2.3) 

𝑆𝑡 = 𝑡𝑎𝑛 ℎ(𝑊𝑠𝑆𝑡−1 + 𝑊𝑥𝑋𝑡)                                                    (2.4) 

𝑌𝑡 = 𝑊𝑦𝑆𝑡                                                                                  (2.5) 

If RNN is unrolled following figure (2.6) it can be seen that there is 

the previous state S0, input at time step 1 is X1, these go into RNN and RNN 

calculate the next state based on its recursive formula tanh(𝑊𝑠𝑆0+𝑊𝑥𝑋1) and 

gives us the state 1(𝑆1)  and to get the output 𝑆1 is multiplied with 𝑊𝑦. 

 

 

Figure (2.6): Simple RNN Unrolled [36] 

 

The new state 𝑆1 and input 𝑋2 is the input for the new time step. 

get 𝑆2and its output can be obtained by multiplying it with 𝑊𝑦. Nevertheless, 

the problem is that the same set of weight is used throughout the model. In 
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the case of multilayer RNN, we serve outputs as the input of our next layer. 

Here𝑌1 and 𝑌2 act as input in the next layer. Furthermore, deeper networks 

usually offer better accuracy but we don't go any further into RNN. In 

general, people use deep modules with 2 to 3 layers. Over time, RNN learns 

to use backpropagation. Thus, the loss is calculated using the output and go 

back to the state by multiplying the gradient to change the weights. However, 

the weight update is nearly nil which is negligible. In other words, the 

suggested model would not acquire new data. This called the vanishing 

gradient problem[35]. More interactions can be added to RNN to solve and 

improve it, which is the idea behind LSTM. 

 

2.9.1 Long Short-Term Memory (LSTM) Algorithm 

LSTM solves the problem of vanishing gradients. LSTM cells can 

solve this issue by integrating memory cells into the RNN concealed layer. 

LSTM has acquired prominence in forecasting time series data for all the 

above reason. 

The calculation formulas[37] related to the LSTM structure are: 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                                    (2.6) 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                                     (2.7) 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                                                   (2.8) 

          C′𝑡 = 𝑡𝑎𝑛ℎ(𝑊g[ℎ𝑡−1, 𝑥𝑡] + 𝑏C′)                                                             (2.9) 

          𝐶𝑡 = 𝐶𝑡−1 ∗ 𝑓𝑡 + C′𝑡 ∗ 𝑖𝑡                                                                        (2.10) 

          ℎ𝑡 = tanh(𝐶𝑡) ∗ 𝑜𝑡                                                                                (2.11) 

In the above-mentioned equations [37], the 𝑊𝑓, 𝑊𝑖, 𝑊𝑔, 𝑊𝑜 are the 

corresponding weight matrix connecting the input signal [ℎ𝑡−1, 𝑥𝑡]. While 
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the 𝑏𝑖, 𝑏𝑓, 𝑏𝑜 and 𝑏𝐶′ are the bias terms for each gate. The σ and tanh 

respectively represent Sigmoid and Hyperbolic tangent activation function. 

 The variables signify the following meanings 𝑓𝑡=Forget 

gate, 𝑖𝑡=Input gate, 𝑜𝑡=Output gate, C′𝑡=Intermediate cell state, 𝐶𝑡=Cell state 

andℎ𝑡=New State. LSTM 's advantage is that it has three gateways. These 

gates and cell states are supplementary interactions. Where there is the gate 

of forgetting which includes a logistic function sigmoid σ as described in 

equation (2.12) [37], and this gate takes the old state and input and increases 

it by the corresponding weight. Then it is passed through a sigmoid 

activation. Then the gate calculates a temporary output between 0 and 1, 

according to equation (2.6) [37]. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥
                                                              (2.12) 

There are gate input and gate output, and they function by the same 

mechanism. The significant point is that every gate has different weight sets. 

Again, C′𝑡 is an intermediate cell state that is used to measure the cell 

status. Then the new condition is obtained by multiplying the cell state's tanh 

activation with the output gate [37]. This method can be represented using 

Figure (2.7). 

 

Figure (2.7): LSTM Mechanism [37] 
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2.9.2 Loss Function 

It is also identified as the cost function, tests the consistency between 

network production forecasts through forwarding propagation and given 

ground truth markers. This function is usually used for multiclass grouping 

is cross-entropy, while usually mean squared error as given in equation 

(2.13) [38] is added to continuous value regression.  

𝑀𝑆𝐸 =
1

𝑛
∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑡 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑡)² 𝑛

𝑡=1                                 (2.13)      

                   

where n refers to the number of samples in the input set, MSE was 

used as the Loss function during the training phase to minimize the 

errors[38]. 

 

2.9.3 Optimizer 

Optimization algorithms are responsible for minimizing or 

maximizing the error/loss function stated in the section above and update the 

system weights. There are different optimization algorithms, including 

RMSprop, Adam, Adamax, etc. Through experiments, it was found that the 

Adaptive Moment Optimizer (Adam) is best suited to solve such problems. 

Where in addition to using adaptive learning rates the parameter is based on 

the average of the first moment (mean) as in RMSProp, Adam uses the mean 

of the second moments of the gradient (non-composite variance). 

Because Adam achieves good results in a short period of time, it is 

considered one of the most effective algorithms in machine learning. The 

translator requires the neural network training group to define both the 

optimization algorithm and the loss function [39,40]. 
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2.9.4 Overfitting 

This indicates to a condition in which a model acquires descriptive 

statistics patterns for the exercise set, i.e. eventually learning the unrelated 

noise instead of knowing the signal and thus has a lower performance on a 

corresponding new dataset. It is one of the main glitches in the area of 

machine learning, as an overfitted model is not generalizable to data that 

have not been seen before. In this context, this test is a key role in proper 

testing the results of machine learning models [41]. 

 

2.9.5 Dropout 

It is a mechanism used in deep neural networks to enhance the training 

area 's performance and get rid of the negative Overfitting phenomenon, and 

it sometimes results from the wrong values. The word "dropout" refers to the 

units (hidden and visible) being lowered in a neural network. By dropping a 

unit out, it is removed from the network temporarily with all its input and 

output connections. These cells are randomly selected and do not use this 

technique in the stage of prediction and conclusion of no longer needed [42]. 

 

2.10 K-Nearest Neighbor Algorithm (KNN) 

  K-nearest neighbors’ algorithm (k-NN) is a method that is utilized in 

machine learning for statistical organization and regression analysis. It is a 

procedure that simply saves the available cases and then models the new 

input data or case based on measuring its resemblance with the other cases. 

The K in KNN represents the value of nearest neighbors that will be used to 

foresee or label the new one. It is a hyperparameter that should be chosen in 

order to find the best conceivable t-value for the data. A hyperparameter is a 
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parameter that cannot be derived directly via the regular process of training. 

In fact, K determines the decision boundary [43]. 

Regarding using KNN algorithm in regression analysis, the average 

value of K nearest neighbors is calculated in order to label the new data. 

KNN algorithms are determined by points such as the value of neighbors, 

and the implemented type of distance. K is one of the most crucial aspects 

that can have a huge impact on the quality of predictions. That is a minor 

value of K can lead to great alteration in foreseen outcomes in any given 

problem. On the contrast, using a big value of K will result in a huge bias in 

the model. Therefore, an appropriate value should be picked for K and it 

should be neither too outsized nor tiny. 

Figure (2.8) allows us to understand how the K parameter picks the 

training set and forecasts unlabeled value. The objective here is to find the 

suitable value of k by using cross-validation in order to create a prototypical 

that is optimal.       

 

 

 

 

 

 

 

 

Figure (2.8): Working Principle of K Parameter [36] 



Chapter Two: Theoretical Background 

27 
 

As is illustrated in the previous paragraphs, KNN regression work 

consists simply of holding a set of training instances. For example, the i-th 

training instance is formed of a vector that has n features: (𝑓1
𝑖, 𝑓2

𝑖, . . ., 𝑓𝑛
𝑖), 

which, in its turn, describes the instance and an associated target vector that 

has m features: (𝑡1
𝑖 , 𝑡2

𝑖 , . . .,𝑡𝑚
𝑖 ). So, a new instance is introduced, this 

instance's features are known (𝑞1, 𝑞2, . . ., 𝑞𝑛), while its target is unknown. 

Based on the vectors of features and the measurement of similarity or 

distance, closest K value is found from the exiting training instances by using 

the features of the newly introduced instance. As an example, presuming that 

the Euclidean distance is the similarity metric, in this case, the distance 

between the new instance and the i-th training instance would be calculated 

by using the equation (2.14) [44]: 

 

 

Euclidean Distance (𝑓; 𝑞) =√∑ (𝑓𝑥
𝑖 − 𝑞𝑥)²𝑛

𝑥=1                                       (2.14)                                                                   

                                      

 

The existing k training instances that are found to be the most similar 

to the new instance are regarded as their K closest instances or K nearest 

neighbors. KNN is carried out on the basis of learning by analogy. It is 

assumed that the targets of the newly-introduced instance are likely to be 

similar to its nearest neighbors. Meaning that the targets of the nearest 

neighbors are collected in order to predict the unknown target of the 

introduced instance. For instance, presuming that the targets or the k nearest 

neighbors of the new instance consists of the vectors: 𝑡1, 𝑡2, ..., 𝑡𝑘, the 
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average of the vectors trying to predict the target of the new instance can be 

calculated by equation (2.15) [44]:    

 

   Average(t) = ∑
𝑡𝑖

𝑘

𝑘
𝑖=1                                                                       (2.15)          

 

   Briefly, the KNN algorithm consists of saving a set of training 

instances that are described by n features. Each training instance is 

represented by a point in an n-dimensional space. When a new instance is 

introduced, KNN locates the closest available k value in the n-dimensional 

space, hoping that their targets are similar to the unlabeled target [44]. 

 

2.11 Support Vector Regression (SVR) 

Support vector regression (SVR) is a variant of Support vector 

machines (SVM). SVM are machine learning algorithm models that are used 

for problem regression and classification problems [45]. SVMs consist 

basically of a kernel algorithm and an optimizer. This works when Kernel 

divides ono-linear data into high-dimensional space and making data linearly 

separable. The learning takes place in the feature space, and the data points 

only appear inside dot products. Thus, the optimizer algorithm is applied to 

solve the optimization problem. Because SVM aims to reduce an upper limit 

of the generalization error consisting of the amount of the error rate and a 

degree of confidence, it demonstrates dominance relative to the widely used 

theory of empirical risk minimization (ERM), which minimizes only the 

error rate. Thus, SVM theory utilizes higher performance in generalization 

than other techniques in machine learning. 
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SVR is a nonlinear regression framework that looks at the poles of sets 

of data and makes a boundary judgment (or hyperplane) to address function 

fitting issues. A nonlinear analysis with an intense band of epsilon is seen in 

Figure (2.9). Often sets of data are linearly non-separable and need to be 

converted to an N-dimensional space and a splitting hyperplane (N-1)-

dimensional needs to be found. The process, however, is computationally 

costly. An appropriate trick to the kernel could significantly reduce the 

computational expenses [45]. 

 

 

Figure (2.9): Non-linear SVR with Epsilon Intensive Band [46]. 

 

The relationship between inputs x1; x2; ….; xn and output Y is 

determined as equation (2.16) [45]: 

          Y = W𝜑 (x) + b                                                                  (2.16) 

 where x is the input parameter; 𝜑 (x) represents the high-dimensional 

feature spaces (kernel function), which is nonlinearly mapped from the input 

space x; ω is the weight coefficient; b is the deviation value. The coefficients 
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of ω and b are estimated by minimizing the regularized risk function as 

equation (2.17) [47]:    

1

2
‖𝜔‖2 + 𝐶

1

𝑛
∑ 𝐿ɛ(𝑦𝑖 , 𝑓(𝑥𝑖))𝑛

𝑖=1                                                    (2.17) 

        where ||ω||2 is a regularized term; minimizing the regularized term 

can make a function as flat as possible. C is the regularization constant (the 

cost of making an error) and ɛ is the threshold of the support vector machine. 

The term (1/n) ∑ 𝐿ɛ(yi, f(xi)) 𝑁
𝑖=1 is the empirical error measured by the ɛ-

insensitive loss function, as expressed in equation (2.18) [47]: 

𝐿ɛ(𝑦𝑖 , 𝑓(𝑥𝑖)) = {
|𝑦𝑖 − 𝑓(𝑥𝑖)| − ɛ, |𝑦𝑖 − 𝑓(𝑥𝑖)| ≥ ɛ

0
                            (2.18) 

  

Here determines a ɛ-Support Vector Regression (ɛ-SVR). If the 

predicted value is within the tube, the loss value is zero, while if the predicted 

value is outside the tube, the loss value is magnitude of the difference 

between the predicted value and the radius ɛ of the tube. To get the estimation 

of ω and b, the equation (2.16) is transformed to the primal objective function 

(2.19) [45] by introducing the positive slack variables 𝜉𝑖
∗. 

min
1

2
‖𝑤‖2 + 𝙲

1

𝑁
∑  (𝜉𝑖 +𝑁

𝑖=1  𝜉𝑖
∗)                                              (2. 19)  

with the following constraints: 

 𝑌𝑖 − 𝑊𝜑(𝑥𝑖) − 𝑏 ≤ ɛ +  𝜉𝑖 

 𝑊𝜑(𝑥𝑖) + 𝑏 − 𝑌𝑖 ≤ ɛ + 𝜉𝑖
∗ 

             𝜉𝑖  , 𝜉𝑖
∗ ≥ 0 

 𝜉𝑖 and 𝜉𝑖
∗ are the residuals beyond the ɛ boundary [45,48], presented 

in figure (2.9). 
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The selection of kernel function 𝜑 (x) is the crucial to the accuracy of 

the final prediction model. Due to the less numerical difficulties and 

nonlinear property in a high dimensional space, radial basis function (RBF) 

is chosen as the kernel function, which is denoted as equation (2.20) [45]: 

𝑘(𝑥, 𝑦) = exp (−
‖𝑥−𝑦‖2

2𝜎2
)                                                            (2.20)  

where ‖𝑥 − 𝑦‖2is the squared Euclidean distance between the two 

feature vectors, and 𝜎 is a kernel parameter.  

In general, the parameters of c and σ are significant factors that 

directly impact the accuracy of the prediction model. 

         

2.12 Naive Bayesian 

It is one of the classification algorithms and depends on the Bayes theory. 

2.12.1 Bayes’ Theorem 

A theory that calculates certain probabilities is conditional since the 

probability that reflects the impact of an event on the likelihood of another 

event is known as conditional probabilities. Bayes' theory uses the posterior 

probability and the previous probability. It represents the pre-probability of 

an event or hypothesis of the original probability where it was obtained 

before obtaining any additional information. The revised probability of the 

event through the use of additional information or evidence that were 

obtained is known as the posterior probability [49]. 

The theory is written as equation (2.21) [49]: 

 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
                                                                    (2.21) 
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Where, 

The prior probability of A is P(A) 

The prior probability of B is P(B) 

The posterior probability of A given B is P(A|B) 

The posterior probability of B given A is P(B|A) 

 

2.12.2 Naive Bayesian Classifier 

The Naive Bayes classifier is a simple and convenient probabilistic 

classifier that depends on the application of the Bayes theorem. Naive Bayes 

regards each component of the attributes as an independent variable. This 

classifier can be trained in supervised learning very well, and can also be 

used in complicated real-life situations.  

All features of the training examples assumed independent from one 

another. The Naive Bayes classifier represents every pattern (X) as a vector 

that has n dimensions for attribute values represent by [a1, a2, a3, ......an]and 

that there are class’s [c1, c2, c3....cn]. As equation (2.22) [49], X is assigned 

to class if and only if 

𝑃(𝐶𝑖|𝑋) > 𝑃(𝐶𝐽|𝑋)                                                                       (2.22) 

 𝐹𝑜𝑟 1 <= 𝑗 < 𝑖 𝑎𝑛𝑑 𝑗 ≠ 𝑖 using equation (2.21), getting the 

equation (2.23) [49]: 

 

𝑃(𝐶𝑖|𝑋) =
𝑃(𝑋|𝐶𝑖)𝑃(𝐶𝑖)

𝑃(𝑋)
                                                                 (2.23)  

the classifier makes the naive assumption that the features (Which is 

indicated by n for its total number) are conditionally independent of one 
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another to reduce the computational expenses to approximate the probability 

of continuous data set, the equation (2.24) [49] can be used: 

 

𝑃(𝑋|𝐶𝑖) = ∏ 𝑃(𝑥𝑗|𝐶𝑖)𝑛
𝑗=1                                (2.24) 

Where 𝑃(𝐶𝐽) =
|𝐶𝑖|

𝑁
  and P(X)=constant for each class, needs Naive Bayesian 

classifier to increase 𝑃(𝑋|𝐶𝑖) only, because it calculates class distribution 

only and this leads to a reduction in the cost of calculation. 

      Bayesian classifier only requires one data scanning so it is very simple 

and provides high accuracy [49]. 

 

2.12.3 Gaussian Naive Bayes 

A common assumption when working with continuing data is that 

the continuous values that correspond with each class are allocated to the 

Gaussian distribution. 

 Training results are broken down by classes as equation (2.25) [50]:  

 

𝑃(𝐶𝑖) = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐶𝑖)/𝑁                                                                 (2.25) 

Where, N is the total number for records and 𝐶𝑖 is the class number. 

  The mean and standard deviation is measured for each class according 

to equation (2.26) [50] and equation (2.27) [50]: 

µ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1                                                                              (2.26) 

𝜎 = [
1

𝑛−1
∑ (𝑛

𝑖=1 𝑥𝑖 − µ)²]⁰˙⁵                                                                   (2.27) 

Where 
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n is the number of instances. 

𝑥𝑖 is a specific value of the x variable for the ith instance. 

Therefore, the equation (2.28) [50] probability distance function (pdf) 

can be used to approximate the probability of continuous data set [50]. 

𝑃(𝑋 = 𝑥|𝐶 = 𝑐) =
1

√2𝜋𝜎
𝑒

−(𝑥−µ)²

2𝜎²                                                            (2.28) 

 

In order to understand how Naïve Bayes works, this simple example 

is explained, so that there are four features and a problem with two 

categories, as shown in table (2.1), and there is a need to apply the Naïve 

Bayes classifier. 

 

Table (2.1) Sample Data for Naïve Bayes Classifier 

Attribute 
class 

A1 A2 A3 A4 

2 

1 

4 

3 

1 

3 

2 

3 

4 

2 

1 

1 

3 

2 

2 

3 

C2 

C1 

C2 

C2 

To classification a new instance X= [3, 2,1,1], 

Solution as follows: 

Trian phase: 

1- The probability is calculated for each class according to the equation 

(2.25). 

P (C1) = frequency (C1)/ N = 1/4= 0.25 
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P (C2) = frequency (C2)/ N = 3/4=0.75 

2- the mean and standard deviation are calculated according to equation 

(2.26) and equation (2.27) for every attribute in dataset of each class. 

as follows: 

µ(A1) =1/1=1    

σ(A1) =1/2 √ [(2 − 1)2+(1 − 1)2+ (4 − 1)2+(3 − 1)2]=1.9 

As shown in table (2.2): 

  

Table (2.2): Mean and Standard Deviation 

mean 

Class 1 Class 2 

A1 A2 A3 A4 A1 A2 A3 A4 

1 3 2 2 2.3 2 2 2.7 

Stander deviation 

Class 1 Class 2 

A1 A2 A3 A4 A1 A2 A3 A4 

1.9 1.1 1.2 0.7 1.5 0.9 1.2 0.6 

 

Test phase 

 The Gaussian distribution is calculated for unlabeled testing instance 

according to equation (2.28). 

P (A1=1|C1) =1/√2𝜋1.9𝑒
−(3−1)2

2(1.9)2
  

                  =1/2.5 ∗ 1.9𝑒
−4

7.2=0.4332 
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As shown in table (2.3): 

 

                               Table (2.3): Probability Density Function 

P(X|C1) P(X|C2) 

3 2 1 1 3 2 1 1 

0.4 0.3 0.34 0.1 0.24 0.5 0.2 0.1 

 

1- Posterior probability of X is calculated according to equation 

(2.29)[50]: 

 

𝑃(𝐶𝑗|𝑋) = 𝑃(𝑋|𝐶𝑗)𝑃(𝐶𝑗)                                                               (2.29) 

 

P (C1|X) = (0.4*0.3*0.34*0.1) *0.25 

=0.00306 

P (C2|X) = (0.24*0.5*0.2*0.1) *0.75 

= 0.0018 

So, P(C1|X) is larger than P (C2|X), then pattern X is expected to be in class C1. 

 

2.13 Accuracy Metrics 

Several requirements are being used to evaluate various algorithms for 

the performance. Root mean square error (RMSE), mean absolute error 

(MAE) and mean absolute percentage error (MAPE) performance indices 

were used for comparison of target values and actual values in the 

performance measurement layer of the current proposal. The RMSE 
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calculates the discrepancy between the energy expected and the power 

intended, the MSE is a calculation used to minimize the distribution of errors. 

And the MAPE is a metric that measures the difference in predictions as a 

percentage of the target capacity. The performance of RMSE, MAE, and 

MAPE can be calculated in equations (2.30)– (2.32) [51], as follows:  

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑇𝑖 − 𝑃𝑖|𝑛

𝑖=1                                                            (2.30) 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑇𝑖−𝑃𝑖|

𝑇𝑖
× 100𝑛

𝑖=1                                                   (2.31) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑇𝑖 − 𝑃𝑖)²𝑛

𝑖=1                                                      (2.32) 

 

                      

Where N indicates the values as a whole, T represents the target value 

and P denotes the value expected. Such measures have a common standard 

for calculating the precision of the tests of the various algorithms [51]. 
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Chapter Three 

The Proposed Model 

3.1 Introduction 

 

This chapter address the problem of electricity consumption 

prediction by testing different algorithms LSTM, KNN, SVR and Naive 

Bayes. And then the proposed will be that produced the best result among 

them. It will start by presenting the general proposed system. 

 

3.2 The General Proposed System 

In this thesis four systems were design modeled, and tested in order to 

find the best technique for such data. four algorithms LSTM, KNN, SVR and 

Navies Byes were tested, at different prediction time: short term prediction 

(one day, one week) and mid-term prediction (one month). 

In the conducted experiment basic stages have been implemented. The 

first stage is read dataset, the second stage is the pre-processing, the third 

stage is building prediction model, and finally the last stage is the 

performance evaluation. As shown in the figure (3.1): 
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Figure (3.1): Block Diagram of General Proposed System 

 

 

Read Dataset 

 

Pre-processing 

 
 

 

Build Prediction 

Consumption Model 

 

Performance Evaluation 
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3.2.1 Dataset  

In order the method for predicted electricity consumption for the proposed 

system. A dataset was collected from the source for different categories. As 

mentioned before, in this system four techniques were used LSTM, KNN, SVR 

and Navies bays. The predication system was implemented on dataset, gained from 

2075259 measurements gathered in a house located in Sceaux (7km of Paris, 

France) between December 2006 and November 2010 (47 months).  

 

3.2.2 Data Pre-processing 

The preprocessing of input data is a very important part of the modeling 

process. It involves checking the quality of the input data and ultimately improving 

the types of inputs, chosen steps and time frames. It directly affects prediction 

results, their accuracy and reliability. Data pre-processing relies on cleaning the 

data. The data cleaning step is mandatory to remove all poor-quality information 

like missing data. 

Algorithm (3.1): Preprocessing Algorithm 
 

Input: data set  

Output: data set after prepressing 

Begin 

Step 1: read data set. 

Step 2: identify the type of each parameter. 

Step 3: merging two columns date and time. 

Step 4: dealing with missing Values, take the mean for each column according 

to the equation (2.26) and put it in the empty place for this column. 

Step 5: normalize the dataset by apply min-max normalization according to 

the equation (2.1) 

END  
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3.2.3 Prediction Models 

This stage includes the prediction models that have been tested for the 

proposed system. Before choosing the proposed system, experiment has been 

conducted on LSTM, KNN, SVR and Naive Bayes. The details for each 

system are describe as follows: 

 

3.2.3.1 LSTM Algorithm 

LSTM (Long Short-Term Memory) Networks are called fancy 

recurrent neural networks. 

LSTM can hold information for long periods of time due to its chain 

like structure, where it can solve the tasks that are difficult to implement 

using traditional RNN. 

LSTM consists of three main parts: 

Forget gate— there is information that are no longer needed to complete the 

task. This gate removes it, and this improves the performance of the network. 

Input gate— through this portal, information is added to cells. 

Output gate— this portal produces the necessary information.  

The LSTM cell is created: 

From the input layer, the previous hidden cell Ht-1 is entered and the 

new sequence 𝑥𝑡 is entered, where the first step of this combined entry is that 

it is crushed through the tanh layer where tanh takes large or small variable 

numbers and converts them at a specific rate between (-1,1), in order to 

ensure that the numbers are in homogeneity and unevenness to generate a 

new memory C`(t) according to equation (2.9). 
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As for the input gate is a layer of sigmoid activation nodes, whose 

output is multiplied by the output of the tanh, the sigmoid of this input gate 

can stop any element of the input vector not required as this function outputs 

the values between 0 and 1, according to eq. (2.7). 

And in forget gate is making an assessment on whether the past 

memory cell is useful for the computation of the current memory cell. Thus, 

the forget gate looks at the input and the past hidden state. This addition 

process, instead of multiplication, helps reduce the risk of gradient 

vanishing. This gate helps the network know the status variables that must 

be remembered or forgotten according to eq. (2.6). 

After completing the above parts, the state of LSTM is updated 

according to eq. (2.10). Obviously, this equation connects the pre-state 𝐶𝑡−1 

and the present temporary-state C′𝑡. 

Through the output gate, LSTM outputs the specified state, based on the cell 

status, where runs a sigmoid layer to determine the unit state section to be 

exported according to eq. (2.8). And deals current output 𝑜𝑡 and state Ct with 

a tanh layer to write a new hidden layer state ℎ𝑡 according to eq. (2.11). 

During the training process, the weight matrices 𝑊𝑓, 𝑊𝑖, 𝑊𝑜 and 𝑊𝑐 and 

bias vectors are learned by using Adam optimization. 

As shown in algorithm (3.2). 

Algorithm (3.2):  LSTM cell Network Algorithm 

Input:  

X (current input) 

H (previous hidden state) 

C (previous memory state)  

Output:  

H (current hidden state) 

C (current memory state) 
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Begin 

Training phase  

 step (1): training = {(𝑥𝑡, 𝑥𝑡+1) t = 1, 2, · · ·, T1} and validation set X 

validation = {(𝑥𝑡, 𝑥𝑡+1), t = T1 + 1, T1 + 2, · · ·, T2},  

Step (2): initialize W randomly, ∓ val  

Step (3): adjusting W:  

Step (4): for epoch = 1 to 200 do  

 Perform forward propagation recurrently using equation from (2.6) to 

(2.11) as follows: 

Step (4.1): the past memory state 𝐶𝑡 − 1 is taken by the LSTM cell and it 

performs a wise multiplication of the element with the forgot gate (f). 

𝐶𝑡 =  𝐶𝑡 − 1 ∗ 𝑓𝑡 

(f gate gives values 0 or 1) 

        if f   = 0 then past memory state is fully forgotten 

        if f = 1 then past memory state passed to the cell H 

step (4.2): compute new memory state from input state and C′𝑡 layer, with 

present memory state 𝐶𝑡  

    𝐶𝑡=   𝐶𝑡 +  (𝐼𝑡*  𝐶`𝑡) 

   𝐶𝑡  = present memory state at time step ‘t’, and it gets push through to 

next time.  

Step (4.3): apply Tanh to 𝐶𝑡  then we do element wise multiplication with 

the output gate O, that will be our current hidden state 𝐻𝑡  

 𝐻𝑡 = Tanh 𝐶𝑡   

pass Ct and 𝐻𝑡 to next time step, then repeat the process itself. 

Step (4.4): compute output error: 𝑥𝑒𝑡+1 − 𝑥𝑡+1, t = 1, 2, · · ·, T1 

Step (4.5): if error ≥ 0.001 then perform backward propagation for all 

layer n-1 to layer 1. 

Step (4.6): update W 
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 W = W + ∆W 

step (4.7): perform forward propagation recurrently to update the network 

states.  

validation phase  

Step (4.8): read validation data. 

step (4.9): perform forward propagation recurrently to compute Xe = 

{𝑥𝑒𝑡+1, t = T1 + 1, T1 + 2, · · ·, T2} 

step (4.10): save the current W.  

if epoch ≥ 200 then 

break 

test phase 

step (5):  read test data 

step (6): perform forward propagation recurrently to compute Xe. 

Step (7): calculate RMSE, MAE, and MAPE. 

End 

 

 

3.2.3.2 KNN Regression Algorithm 

The algorithm is used for regression, which is a non-parametric 

method. The closest examples of training k in the feature field are those that 

represent input. Through a similar calculation, the object property is obtained 

and from the average value of the closest training points, the value of the 

object is obtained. The flow chart of the KNN algorithm as shown in figure 

(3.2). KNN algorithm is clarified in algorithm (3.3). 
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Figure (3.2) KNN Regression Flowchart 
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Algorithm (3.3):  KNN   Algorithm   

Input: features (Global active power, Global reactive, power, Voltage, Global 

intensity, Sub metering 1, Sub metering 2, Sub metering 3) 

Output: predicated samples 

Begin 

Training Phase 

Step (1): read in data and needed packages 

Step (2):  initialize value of K. 

Step (3):  calculate distances between each k neighbor points.  

Distances [Index] = distance function in equation (2.14). 

Step (4): determine nearest neighbors based on minimum distance. 

Step (5):  calculate the average of those neighbors to obtain predictor according 

to eq. (2.15). 

Step (6):  for n=0.   

Step (7):  calculate the distance between the predictor and its neighbor to obtain 

error(𝐸𝑘(𝑛)). 

Step (8):  n=n+1. 

Step (9):  if 𝐸𝑘 decrease increase k and go step 3 

Else stop and return k=argmin (Ek). 

Testing phase  

Step (10): read testing data. 

Step (11): calculate the average of k neighbors (that was calculated in training). 

Step (12): measure the distance between the test data and the average K                 

neighbors.  

Step (13): calculate RMSE, MAE, and MAPE. 

 End 
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3.2.3.3 SVR Algorithm 

Finding a function f(x) that has at most deviations from the actual 

goals of (𝑦𝑖) of the available training data, is what SVR algorithm represents. 

Finding suitable values for excessive parameters through multiple rounds of 

model building is the main test part of the SVR. 

There are training parameters (C, kernel, and ε) that must be prepared 

for ε - sensitive loss function, and this is what SVR depends on in its 

performance. The value of (C and ε) for any type of kernel affects the 

difficulty of the model. Also, the number of support vectors used for 

prediction is affected by the value of (ε), as the larger value of (ε) the less 

number support vectors. This makes regression estimates less complicated. 

Figure (3.3) shows the flow chart of SVR algorithm. SVR algorithm is 

clarified in algorithm (3.4). 
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Figure (3.3) SVR Flowchart 
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Algorithm (3.4): SVR Algorithm 

Input: features (Global active power, Global reactive, power, Voltage, 

Global intensity, Sub metering 1, Sub metering 2, Sub metering 3) 

Output: predicated samples 

Begin 

Training Phase 

Step (1): reading the dataset.  

Step (2): set an initial value of weight and bias.  

Step (3): set an initial value of parameter C and kernel parameter σ. 

Step (4): set ɛ   to 0.0001. 

Step (5): calculate the kernel RBF according to eq. (2.16) and eq. (2.20). 

Step (6): obtain the best value of C according to eq. (2.19). 

Step (7): use the best value of C on the training data.  

Step (8): update the values of weight and Bias. 

Step (9): if the difference between the update values of weight and Bias 

and the previous value is greater than ɛ go to step 5 

Else end training. 

Testing Phase 

Step (10): select the testing data. 

Step (11): implement the test by using the best value of weight, bias, C and 

σ from the training.   

Step (12): calculate RMSE, MAE and MAPE. 

END 
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3.2.3.4 Naive Bayes Algorithm 

The last algorithm that used is Naive Bayes, and the flow chart as 

shown in figure (3.4). Naive Bayes algorithm is clarified in algorithm (3.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

   

 

 

 

 

Figure (3.4) Naive Bayes Flowchart 
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Algorithm (3.5): Naive Bayes Algorithm 

Input: attributes (Global active power, Global reactive, power, Voltage, 

Global intensity, Sub metering 1, Sub metering 2, Sub metering 3) 

Output: regressor label. 

Begin 

Step (1): Approximate the dataset. 

                 Splitting the dataset into 70% train data and 30%test data. 

Training Phase 

Step (2): Total=All instances in training dataset 

Step (3): Calculating the probability of each regressor 

P(Cj)=frequency (Cj) / Total 

Cj is regressor in training dataset. 

j is number of regressor in training dataset. 

Step (4): Calculating the mean and standard deviation values for each 

attribute of each regressor in training dataset by applying the equation 

(2.26) and equation (2.27). 

Testing Phase 

Step (5): X is an instance in testing dataset 

Step (6): Calculating the Probability Density Function(pdf) of X at Cj, for 

values of attributes of X exists in S, p (Xi | Cj) by applying the equation 

(2.28). 

Step (7): Calculating conditional probability of X at Cj for values result 

from step (3.2), using equation (2.24). 

Step (8): Calculating posterior probability of X, p (Cj|X) that represent 

probability of instance at Cj using equation (2.29). 

P (Cj | X) = P(X | c j) p(C j) // probability of instance at 𝐶𝑗 

Step (9): Assign regressor label to the test sample X based on maximum 

posterior p(Cj|X). 
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Step (10): Return regressor label. 

Step (11):  calculate (RMSE, MAE, and MAPE).   

END 

 

 

3.2.4 Performance Evaluation 

To evaluate the algorithms for the performance., mean absolute error 

(MAE) according to equation (2.30). mean absolute percentage error 

(MAPE) according to equation (2.31) and Root mean square error (RMSE) 

according to equation (2.32) performance indices were used for comparison 

of target values and actual values in the performance measurement layer of 

the algorithms. These scales provide a single value for measuring the 

accuracy of results for different algorithms. 

 

3.3 The Prediction System 

This section includes the systems that have been used in the thesis. 

Testing the approaches with three prediction time, short term prediction (one 

day, one week), mid-term prediction (one month). the dataset is divided into 

70% training and 30% testing, the flowchart of the proposed system is shown 

in figure (3.5), and Algorithm (3.6). 
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Figure (3.5) The Proposed Prediction System Flowchart 
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Algorithm (3.6): The Proposed Prediction System Algorithm 

Input: data set.  

Output: proposed prediction system 

Begin 

Step (1): read Data. 

Step (2): define each parameter. 

Step (3): make a preprocessing. 

Step (4): Resampling data at different period (one day, one week, on 

month). 

Step (5): splitting Train and Test data. 

Step (6): build a prediction model using LSTM, KNN, SVR and Naïve 

Bayes.  

Step (7): calculate RMSE, MAE, and MAPE. 

Step (8): make a comparison between the algorithms.  

END 
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Chapter Four 

Experimental Results and Evaluation 

 

4.1 Introduction 

 In this chapter, the implementation results obtained by testing 

different prediction models are summarized and then the proposed model 

will be that which produced the best result among them described in detail 

in chapter three. The next sections discuss the experimental results which 

obtained from the preprocessing and prediction, which contain training and 

testing stages. Finally, this chapter includes the comparison of the proposed 

work with other existing works. 

 

4.2 Implementation Environment 

Electricity consumption predicting approaches using LSTM, KNN, 

SVR and Naïve Bayes is implemented under a specific system requirement 

such as Windows-10 operating system, Hardware processor: Core i5- CPU 

8250U, 1.60 GHz, and (8GB) RAM. Python 2018 (3.8 64-bit) programming 

language with TensorFlow backend. 

 

4.3 Prediction Systems Implementation 

The prediction systems have four stages executed sequentially, starts 

by read dataset ends with performance evaluation as described in the 

following sections. 
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4.3.1 Dataset Information 

Electricity energy  consumption dataset [52] contains 2075259 

measurements. The consumption of power in period of four years (between 

December 2006 and November 2010 (47 months)) for one house located in 

Sceaux ((7km of Paris, France)) was delineated using a dataset of a 

multivariate time series, which consist in addition to the date and time seven 

attributes are described in the appendix A. 

Where this dataset was used because it represents globally approved 

and accurate data and contains other features in addition to the feature of 

actual consumption and affects it, through which the forecast of electricity 

consumption can be measured compared to other data that depend only on 

the characteristic of actual electricity consumption . 

 

4.3.2 Pre-processing 

The preprocessing of the entered data is a very important part of the 

modeling process, as it directly affects prediction results, their accuracy and 

reliability, and this section highlights the data cleaning process used in 

experiments. the input data is read and the type of each parameter are 

determined, and because the data is large in size as it calculate consumption 

per minute, the columns of time and date are combined to ensure the ease of 

dealing with data as shows in figure (4.1). 
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Figure (4.1) Sample Dataset before and after Merging Time and Date 

Each row was examined with a date versus each column to determine any 

null values. If null values are found, this is replaced by taking the average value 

according to equation (2.26) for all other values with a similar time period in the 

data set for this respective column. 

                                           

 

a. Dataset with sum of 

null values 

 

b. Dataset without null values 

Figure (4.2) Dataset with and Without Null Values 

 

 

 

a. Sample dataset before merging time and date 

 

b. Sample dataset after merging time and date 
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In the figure (4.2a) it shows the sum of the null values for each column, 

where it shows that the column of “sub metering 3” contains 25979 of the 

null values while the other columns contain zero of the null values. The 

figure (4.2b) shows that all columns contain values and their type is float. 

This shows that we got rid of the null values in the data. 

Data can be pre-processed by using the Min-Max Scaler method, 

where the features are transformed by changing the size of each feature to a 

specific range were normalized to fit them in the interval [0, 1] by using 

equation (2.1) where the maximum and input feature range values are min 

and max, and each feature is measured separately so that it is in the points 

specified in the training set. 

 

  4.4 Prediction Systems Results  

This section will display the results obtained from the implementation 

of the prediction systems. It includes the results of the prediction of four 

systems, LSTM, KNN, SVR and the fourth Navies Bayes. Data are split into 

two sets: training and testing datasets. The training dataset is used to 

calculate the model parameters, while the testing dataset is utilized to 

measure the model’s performance. 

In this study, after preprocessing for dataset, the dataset is divided into 

70% training and 30% testing, where training and test data are divided into 

three different ways to be able to understand power consumption for 

individual house. 

•Given one day predicting the next day 

The model is trained to take one day of inputs to predict consumption 

for the next day. 
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•Given one week predicting the next week. 

one week was given to predict one week ahead. 

•Given one month predicting the next month. 

The model is trained to take one month of inputs to predict 

consumption for the next month. 

The prediction of one day and one week in the future represents a 

short-term prediction. As for the prediction of one month in the future, it is 

within the medium-range prediction. These ranges are used to create energy 

consumption behavior for 14 months (which represents 30% for data 

testing). 

The input (𝑋𝑡) is used to predict (𝑋𝑡+1) as the output. (𝑋𝑡) can 

represent one day, one week, or one month of power consumption for an 

individual house. 

Where the prediction is made by entering the attributes values for the 

time period (t) to predict the energy consumption for the time period (t+1). 

 Algorithms are evaluated using Accuracy metrics mean absolute error 

(MAE) according to equation (2.30), mean absolute percentage error 

(MAPE) according to equation (2.31) and root mean square error (RMSE) 

according to equation (2.32). The lower the error ratio, the greater the 

accuracy of the model, the results as follows: 
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4.4.1 First System LSTM   Results 

In this section, the implementation of LSTM network will be 

discussed. input dataset after preprocessing and output is prediction of active 

power.  

Training phase: 70% from dataset are used for training.  Firstly, 

initialize weight randomly. Applying equations from (2.6) to (2.11) to have 

a stable weight, the LSTM trained them for several epoch.  

Test phase: 30% from dataset are used for testing. The active power is 

predicted by starting with the weight and learning rate from the training step 

and applying equations from (2.6) to (2.11) on the entered test values. Where 

RMSE, MAE and MAPE are used to performance evaluation. as shown in 

its algorithm (3.2).  

LSTM contain 100 layers, and used for train 200 epochs with batch 

size 70 for training dataset. To obtain the most precise output prediction. 

Adam optimizer has been utilized as well as mean square error. 

Our data is in 2 dimensions matrix consisting columns and 

corresponding rows. But input to a LSTM network is 3 dimensions matrix. 

The other dimension of this matrix is time steps. 

Table (4.1) Model summary (LSTM) 

Layer (type) Output Shape Param # 

lstm_1 (LSTM) (None, 100) 43200 

dropout_1 (Dropout) (None, 100) 0 

dense_1 (Dense) (None, 1) 101 

Total params: 43,301 

Trainable params: 43,301 

Non-trainable params: 0 
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Table (4.1) shows the Model summary (LSTM), which has 100 hidden 

layers used including a dropout layer before the last layer. It is a layer used 

in deep neural networks to enhance the training area 's performance and get 

rid of the negative Overfitting phenomenon. And the dense layer which is 

the last layer from which the output was obtained. The table also shows the 

total number of parameters in the layers and the number of parameters that 

have been trained. 

• Performance Evaluation For LSTM 

The performance of a system LSTM is measured by calculating 

(MAE) according to equation (2.30), (MAPE) according to equation (2.31) 

and (RMSE) according to equation (2.32), for each range and according to 

the following: 

1.Short term prediction (one day) 

It shows by predicting one day ahead, along 14 months Which 

represents the duration of the test.  

 

Table (4.2) Predicted LSTM for Active Power (One Day) over 14 Months 

Actual Active Power (KWh) Predicted Active Power (KWh) 

1.48313194 1.03650101 

1.41342222 1.19516655 

0.98463056 1.17046042 

0.86565     1.03457302 

1.13653472 0.95700433 

0.99045694 1.07159525 
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0.62563194 1.30569124 

1.41773333 0.87601756 

1.09551111 1.26984924 

1.24739444 1.22108569 

                             mean absolute error (MAE) =             0.183 

          mean absolute percentage error (MAPE) =        18.324 

                     root mean square error (RMSE)=               0.244 

 

Table (4.2) shows the Active Power values for the short term (one 

day), and through the implementation of LSTM algorithm (3.2), prediction 

values (one day) for 14 months will appear, and from the values of this table 

(MAE), (MAPE) and (RMSE) can be calculated to measure the accuracy of 

the prediction.                                                                                                         

The table (4.3) shows the prediction errors of LSTM for one day by 

calculate (MAE), (RMSE) and (MAPE). 

 

Table (4.3) Prediction Errors of LSTM for One Day 

Prediction Errors of LSTM for One Day 

MAE=0.183 

MAPE=18.324 

RMSE=0.244 
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Figure (4.3) Model Loss for LSTM for One Day 

 

For the short-term prediction (one day), as shows in figure (4.3), the 

loss is about 0.015 for the training and 0.010 for testing. It is clear that the 

error for the training is higher than for the testing. 

2.Short term prediction (one week) 

It shows by predicting one week ahead, along 14 months Which represents 

the duration of the test.  

The table (4.4) shows the prediction errors of LSTM for one week by 

calculate (MAE), (RMSE) and (MAPE). 

 

Table (4.4) Prediction Errors of LSTM for One Week 

Prediction Errors of LSTM for one week  

MAE=0.145 

MAPE=15.182 

RMSE=0.179 
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Figure (4.4) Model loss for LSTM for One Week  

 

For the short-term prediction (one week), in figure (4.4).  The loss is 

about 0.009 for the training and 0.006 for testing. It is noted that the loss 

value of the test tries to approach the training loss compared to short term 

prediction.  

3.Medium term prediction (one month) 

It shows by predicting one month ahead, along 14 months Which 

represents the duration of the test. 

The table (4.5) shows the prediction errors of LSTM for one month by 

calculate (MAE), (RMSE) and (MAPE).  

         Table (4.5) Prediction Errors of LSTM for one month 

Prediction Errors of LSTM for one Month  

MAE=0.145 

MAPE=14.018 

RMSE=0.166 
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Figure (4.5) Model loss for LSTM for one month 

 

For the mid-term prediction, in figure (4.5) shows that the loss is about 

0.006 for the training and 0.004 for testing  

By comparing the error scores for the periods for LSTM with each 

other, it can be seen that the RMSE, MAPE and RMSE value is low in mid-

term predictions (one month) 0.145, 14.018 and 0.166. As show in table 

(4.5). This clearly indicates that LSTM has performed good with mid-term 

predictions. 

 

4.4.2 Second System KNN Results 

The input dataset after preprocessing and output is prediction of active 

power. The basic idea of KNN is as follow:   

  Training phase: 70% from dataset are used for training. A number of 

numerical features which consider the input and try to find the similarity 

between the input according to equation (2.14), determine nearest neighbors 
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based on minimum distance. Then, calculate the average of those neighbors 

to obtain predictor according to equation (2.15), as discuss in chapter two. 

calculate the distance between the predictor and its neighbor to obtain error. 

If the error decreases then the value of k is increased, and return to calculate 

the distance between each neighbor’s point, and if the error rises, we stop to 

get the point of k that got the least error. 

Test phase: 30% from dataset are used for testing. The prediction for 

the active power is done by calculate the average of k neighbors (that was 

calculated in training). Then, measure the distance between the test data and 

the average K neighbors. Where RMSE, MAE and MAPE are used to 

performance evaluation. The results of KNN depending on (3.3) algorithm. 

• Performance Evaluation For KNN 

The performance of a system KNN is measured by calculating (MAE), 

(MAPE) and (RMSE) for Short term prediction (one day, one week) and 

medium-term prediction (one month). As shown in table (4.6). 

 

Table (4.6) Prediction Errors of KNN 

Prediction Errors of KNN 

 One day for one week for one month 

MAE 0.228 0.170 0.170 

MAPE 23.952 16.041 15.750 

RMSE 0.300 0.213 0.198 

 

By comparing the error scores for the periods for KNN with each 

other, it can be seen that the RMSE, MAPE and RMSE value is low in mid-

term predictions (one month) 0.170, 15.750 and 0.198. As show in table 
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(4.6). This clearly indicates that KNN has performed good with mid-term 

predictions. 

 

4.4.3 Third System SVR Results 

There are slight differences in precept SVR action in relation to SVM 

classification, the input to the algorithm is dataset after preprocessing and 

output is prediction of active power. The data have been separated into 

training set and test set. The way to work is as follows:  

Training phase: 

70% from dataset are used for training. The hyper plane is been found 

according to eq.(2.16) and that by setting an initial weight and bias .The three 

training parameters are prepared (kernel, C, ɛ) where the Radial Basis 

Function (RBF) type kernel has been used, set ɛ   to 0.0001 and vary C. Train 

the dataset, obtain the best value of C. Use the best value of C and σ on the 

training data according to eq.(2.19) and eq.(2.20). Update the values of 

weight and Bias. 

The support vectors are affected by a value of ɛ. The complexity of 

the model depends on the values of (ɛ, C). 

Testing phase:  

30% from dataset are used for testing. Test data will estimate the 

prediction value using the train model parameters (σ, C, w) according to eq. 

(2.16), eq. (2.19) and (2.20), then the predicated values will be compere with 

the test data output for error calculations.  Where RMSE, MAE and MAPE 

are used to performance evaluation. The results of SVR depending on (3.4) 

algorithm. 
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• Performance Evaluation For SVR 

The performance of a system SVR is measured by calculating (MAE), 

(MAPE) and (RMSE) for Short term prediction (one day, one week) and 

medium-term prediction (one month). As shown in table (4.7). 

 

                 Table (4.7) Prediction Errors of SVR 

Prediction Errors of SVR 

 One day One week One month 

MAE 0.191 0.147 0.160 

MAPE 20.226 14.870 15.301 

RMSE 0.250 0.179 0.176 

 

By comparing the error scores of all prediction ranges for SVR with 

each other, and despite the convergence of the result RMSE for short term 

(one week) with the mid-term (one month), However, other results indicate 

that SVR excels in performance in short term (one week) 0.147,14.870 and 

0.179 as show in table (4.7). 

 

4.4.4 Fourth System Navies Bayes Results 

Given that the data used are time series data, large size and floating 

type, it is difficult for us to use classification. And in order for the Navies 

Bayes algorithm to be used, Approximate the dataset to reduce the number 

of categories and facilitate the classification of data into these categories. 

The input to the algorithm is dataset after preprocessing and the result is the 

prediction of the active power. The data set was separated into a training 
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group and a test group. The Navies Bayes algorithm has been implemented 

as follows: 

Training phase: 70% from dataset are used for training. In this stage 

the mean and the standard deviation are calculated for attributes (Global 

active power, Global reactive power, Voltage, Global intensity, Sub 

metering1, Sub metering2 and Sub metering3) of the training data, according 

to equation (2.26) and equation (2.27) and then used as parameters in the 

testing phase.  

Testing phase: 30% of the power consumption dataset has been used, 

to compute the posterior probability according to equation (2.29), the 

probabilities are predicted depending on the Gaussian distribution for each 

regressor according to equation (2.28) as discuss in chapter two. Where 

RMSE, MAE and MAPE are used to performance evaluation. as shown in 

its algorithm (3.5).  

• Performance Evaluation for Naïve Bayes 

The performance of a system Navies Bayes is measured by calculating 

(MAE), (MAPE) and (RMSE) for Short term prediction (one day, one week) 

and medium-term prediction (one month). As shown in table (4.8). 

 

             Table (4.8) Prediction Errors of Naive Bayes 

 
Prediction Errors of Naive Bayes 

One day One week One month 

MAE 0.303 0.199 0.171 

MAPE 28.418 19.018 17.413 

RMSE 0.426 0.254 0.216 
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By comparing the error scores for all prediction ranges for Naive Bayes 

with each other, it can see that the RMSE, MAPE and RMSE value are reduced in 

mid-term predictions (one month) as follows 0.171, 17.413 and 0.216 as show in 

table (4.8). This clearly indicates that Naïve Bayes has performed good with mid-

term predictions. 

 

4.5 Performance Comparison  

In this section, four systems LSTM, KNN, SVR and Naive Bayes are tested 

to obtain the proposed system will be that produced the best result among them by 

comparing the results obtained from the accuracy measurements RMSE, MAPE 

and RMSE according to equations from (2.30) to (2.32)   for short term (one day 

and one week), and mid-term predictions time. And time was calculated for 

training on a training dataset where time was measured in seconds. 

4.5.1 Short Term Prediction (one day) 

In order to show short term predictions (one day), the use of models to 

predict power consumption. In table (4.9) The results are shown. In comparison to 

KNN, SVR and Naïve Bayes, LSTM has shown to perform better for short term 

predictions (one day), although it had the most training time. 

Table (4.9) Short Term Predictions (One Day) 

model 
Error Time 

(second) MAE MAPE RMSE 

LSTM 0.183 18.324 0.244 17.59299 

KNN 0.228 23.952 0.300 0.054105 

SVR 0.191 20.226 0.250 0.100896 

Naïve 

Bayes 
0.303 28.418 0.426 0.001290 
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Figure (4.6) Actual Consumption vs. Predicted Consumption for Models Daily Over 14 

Months 

From the figure (4.6),  a convergence was noticed between the curve of all 

models with each other and with the actual curve when implemented on test data. 

In spite of this, it is noticed that the LSTM is the closest to the actual consumption 

curve, while the curve of the Naïve Bayes model represented by green is the 

farthest from the real curve and the curves of other models. 

 

4.5.2 Short Term Prediction (one week) 

` To show the short-term (one week) predictions, In table (4.10) The results 

are shown. In comparison to KNN, SVR and Naïve Bayes, LSTM has shown to 

perform better for mid-term predictions. However, SVR have also shown close 

performances to LSTM, although it had the most training time.    

Table (4.10) Short-Term Predictions (One Week) 

model 
Error Time 

(second) MAE MAPE RMSE 

LSTM 0.145 15.182 0.179 11.61310 

KNN 0.170 16.043 0.213 0.12974 

SVR 0.147 14.870 0.179  0.15064 

Naïve 

Bayes 
0.199 19.018 0.254   0.09456 
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Figure (4.7) Actual Consumption vs. Predicted Consumption for Models Weekly Over 

14 Months 

 

Figure (4.7) shows the evolution of the forecast of the different models 

compared to the actual consumption for short term (one week), for which the 

LSTM faithfully follows the actual curve. 

 

4.5.3 mid-term Prediction (one month) 

To show the mid-term prediction, table (4.11) shows the mid-term power 

consumption. the LSTM model have outperformed the rest of the models for mid-

term predictions although it had the most training time. However, SVR has also 

shown close performances to LSTM, with less training time compared to other 

models.    

Table (4.11) Mid-Term Predictions (One Month) 

model 
Error Time 

(second) MAE MAPE RMSE 

LSTM 0.145 14.018 0.166 5.833945 

KNN 0.171 15.750 0.198 0.000967 

SVR 0.160 15.301 0.176 0.072627 

Naïve Bayes 0.171 17.413 0.216 0.001388 
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Figure (4.8) Actual Consumption vs. Predicted Consumption for Models 

Monthly Over 14 Months 

 

Figure (4.8) shows the results of the mid-term (one month) prediction 

obtained by the four models (LSTM, KNN, SVR, Naïve Byes). From the 

extracted curves it is clearly noticed that the LSTM is the closest to the actual 

consumption curve. It is followed by the SVR. Then, slightly less so the KNN 

curves, while the Naïve Byes is the furthest from the real curve. 

Although the implementation time for LSTM system is long compared 

to the rest of the systems, it is clear that LSTM system is capable of 

predicting the consumption of electricity in the short term (one day, one 

week), medium term (one month) with high accuracy. 

 

4.6 Proposed Model vs. Related Work 

By comparing the performance results of the proposed methodology 

against what is related to the work that has been proposed in the same field, 

it was found that the work of Kim and Cho [14] predicts electricity 

consumption and uses the same data set used by the proposed system, but 

applies a pre-treatment to it in a 60-minute window by the sliding window 

algorithm. It uses the CNN-LSTM algorithm to predict electricity 
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consumption at time intervals per minute, per hour, per day, and per week, 

while the proposed system uses min - max normalization in pre-processing 

and LSTM algorithm on time ranges (one day, one week) short term and (one 

month) mid-term. Using the measures of accuracy: root mean square error 

(RMSE), mean absolute error (MAE) and mean absolute percentage error 

(MAPE) and comparing results, it is found that the proposed system may 

outperform existent work in the time period (one day, one week) and 

according to the Table (4.12): 

 

Table (4.12) Comparison between Other Existing Work and The Proposed Work. 

model period 
Error 

MAE MAPE RMSE 

Proposed 

Model 

(LSTM) 

Daily  0.183 18.324 0.244 

Weekly 
0.145 15.182 0.179 

CNN-LSTM 
Daily  0.257 31.83 0.322 

Weekly 0.238 31.84 0.309 
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Chapter Five 

Conclusions and Suggestions for Future Works 

5.1 Conclusions  

 

Smart  metering technologies enhance data analytics in energy 

management, and create new capacities for energy services. Predicting 

energy consumption in homes is an aspect of energy management, 

accounting for consumption in the residential sector, a large proportion of 

the total demand for electricity. 

 The study focuses on models that can be used to predict electricity 

consumption for an individual home for the short term (one day, one week) 

and the medium term (one month). The study compares the LSTM, KNN, 

SVR, Naïve Bays by conducting experiments with data for an individual 

house smart meter dataset in France. although the SVR showed good 

performance for short term predictions (one week). The LSTM showed 

similar performance to the SVR performance of short-term predictions, 

while it outperformed all other models in short-term predictions (one day, 

one week) and medium-term predictions (one month), while the naive 

performed the weakest compared to other models. It is evident that the 

LSTM is able to predict short-term (one day, one week) and medium term 

(one month) of electricity consumption with high accuracy.  
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5.2 Suggestions for Future Works 

The future work would involve: 

• The proposed model can be applied on a different dataset with varied 

input such as temperatures and environmental factors to enhance 

model performance. 

• Utilization of model output to predict the cost of power and to 

determine the suitable times for maintenance by power suppliers. 

• Other source of energy can be taken into consideration such as solar 

energy or biogas as source of energy to be predicted by the model 

effectively. 

• Use of hybrid algorithms with the model to attempt obtaining more 

accurate results. 
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Appendix A 

1. Global active power: The active power that the household consumes per minute 

(in kilowatt). 

2. Global reactive power: The reactive power that the household consumes per 

minute (in kilowatt). 

3. Voltage: averaged voltage per minute (in volt).  

4. Global intensity: per minute, the averaged current intensity (in ampere). 

5. Sub metering 1: energy (in watt-hour of active energy). It corresponds to the 

kitchen, containing mainly a microwave, an oven and a dishwasher (here hot plates 

are gas powered not electric).  

6. Sub metering 2: energy (in watt-hour of active energy). It corresponds to the 

laundry room, containing a tumble-drier, a washing-machine, a light and a 

refrigerator. 

7. Sub metering 3: active energy (in watt-hour of active energy). for an air-

conditioner and an electric water-heater. 

Sample of the dataset [57] 

Date Time 

Global 

active 

power 

Global 

Reactive 

power 

Voltage 
Global 

intensity 

Sub 

Meteri

ng 1 

Sub 

Metering 

2 

Sub 

Metering 

3 

16/12/2006 17:24:00 4.216 0.418 234.840 18.400 0.000 1.000 17.000 

16/12/2006 17:25:00 5.360 0.436 233.630 23.000 0.000 1.000 16.000 

16/12/2006 17:26:00 5.374 0.498 233.290 23.000 0.000 2.000 17.000 

16/12/2006 17:27:00 5.388 0.502 233.740 23.000 0.000 1.000 17.000 

16/12/2006 17:28:00 3.666 0.528 235.680 15.800 0.000 1.000 17.000 

 

 



 

 

 ةـالخلاص

 

يؤدي النمو السكاني المتزايد وعدد الأجهزة الكهربائية المستخدمة يومًا بعد يوم إلى زيادة 

  استهلاك الطاقة الكهربائية ، وبالتالي الطلب على الكهرباء ، مما يؤدي إلى الضغط على موردي 

فإن استخدام تقنية العداد  الكهرباء. نظرًا لوجود العديد من العوامل التي تؤثر على استهلاك الكهرباء ،  

و   ، الساعة  مدار  على  البيانات  من  هائلة  كميات  على  الحصول  من  يمكّننا  التنبؤ  الذكي  يسهل  هذا 

 باستهلاك الطاقة وتنظيم إدارة الطاقة.

واحد على المدى القصير    منزلفي هذه الدراسة ، تم اقتراح نموذج للتنبؤ باستهلاك الطاقة ل

)شهر واحد(. يتكون النموذج المقترح من أربع مراحل:  والمدى المتوسط   )يوم واحد ، أسبوع واحد(

ا قبل المعالجة ومرحلة التنبؤ ومرحلة تقييم الأداء. تم جمع مجموعة مرحلة قراءة البيانات ومرحلة م

  تطبيق   تم  ،    ثمل واحد للتحقق من صحة النموذج وتحليل النتائج.  البيانات من خلال عداد ذكي من منز

وخوارزميات التعلم الآلي     (Long Memory-Term Memory LSTM) آلة التعلم العميق

خوارزميه)   المعروفة و (Vector Regression SVR  وهي   K-nearest) خوارزميه ، 

neighbor KNN  )  خوارزمية)و (Naive Bayes   على البيانات المعالجة مسبقاً للتنبؤ باستهلاك

واحد  أسبوع   ، واحد  ليوم  واحد.    الطاقة  الإحصائية: وقد  وشهر  المقاييس  باستخدام  مقارنتها  تمت 

الخطأ  وجذر متوسط   (MAPE) النسبي المطلقالخطأ  ، متوسط   (MAE) الخطأ المطلقمتوسط  

 .لقياس أداء خوارزميات التعلم الآلي هذه (RMSE) التربيعي

  K-NNأفضل من    LSTMتشير قيم القياس الإحصائية هذه إلى أن أداء النموذج المقترح  

للتنبؤ بالطاقة ليوم واحد وأسبوع وشهر واحد على البيانات المقدمة.   Naïve Bayesو    SVRو  

للتنبؤ    RMSE 0.244و    MAPE 18.324و    MAE 0.183هي    LSTMنتائج نموذج    كانت و

للتنبؤ    RMSE 0.179و    MAPE 15.182و    MAE 0.145باستهلاك الطاقة ليوم واحد و  

  RMSE 0.166و    MAPE 14.018و    MAE 0.145باستهلاك الطاقة لمدة أسبوع واحد.  

قادر على التنبؤ باستهلاك   LSTMضح أن نموذج  للتنبؤ باستهلاك الطاقة لمدة شهر واحد. من الوا

 )شهر واحد( بدقة عالية. الكهرباء على المدى القصير )يوم واحد ، أسبوع واحد( والمدى المتوسط 
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